W dzisiejszym artykule zagłębimy się w fascynujący świat Glikogen. Niezależnie od tego, czy szukasz informacji na temat Glikogen, czy po prostu chcesz odkryć wszystko, co ten temat ma do zaoferowania, jesteś we właściwym miejscu. Od jego wpływu na społeczeństwo po różne praktyczne zastosowania – dokładnie zbadamy każdy aspekt Glikogen. Przygotuj się na podróż pełną odkryć i nauki, dzięki której zyskasz zupełnie nowe spojrzenie na Glikogen. Bez względu na poziom Twojej wcześniejszej wiedzy na ten temat, jestem pewien, że znajdziesz nowe i istotne informacje, które będą dla Ciebie bardzo przydatne. Zacznijmy!
| |||||||||||||||||||||||||||||||
Ogólne informacje | |||||||||||||||||||||||||||||||
Monomery |
D-glukoza (C6H12O6) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identyfikacja | |||||||||||||||||||||||||||||||
Numer CAS | |||||||||||||||||||||||||||||||
PubChem | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
|
Glikogen – polisacharyd (wielocukier), którego cząsteczki zbudowane są z połączonych ok. 100 000 reszt D-glukozy. W organizmach zwierzęcych jest gromadzony w wątrobie, w około 7 razy mniejszym stężeniu występuje też w tkance mięśni poprzecznie prążkowanych (szkieletowych). Jednakże ze względu na dużą masę mięśni w całym organizmie, całkowita zawartość glikogenu w mięśniach stanowi około trzech czwartych jego zawartości w organizmie człowieka.
Jest głównym wielocukrem, który stanowi materiał zapasowy w komórkach zwierzęcych. U roślin spotykany jest bardzo rzadko, np. w ciałkach odżywczych wytwarzanych na ogonkach liściowych cekropek Cecropia[2].
Ma strukturę podobną do amylopektyny, tylko że jego cząsteczki są bardziej rozgałęzione, a łańcuchy boczne krótsze. Cząsteczki glukozy w prostym łańcuchu połączone są wiązaniami α-1,4-glikozydowymi. Rozgałęzienie tworzone jest co 8–12 monomerów przez wiązanie α-1,6-glikozydowe. Glikogen w miarę potrzeby może być szybko rozkładany do glukozy (jednakże nie w mięśniach, ze względu na brak glukozo-6-fosfatazy) i w przeciwieństwie do tłuszczów uwalniana glukoza może być źródłem energii w przemianach beztlenowych. Do najbogatszych w ten materiał zapasowy narządów należą wątroba (5% jej masy) i mięśnie (ok. 0.7% ich masy). Glikogen występuje w postaci ziaren o średnicy 10–40 nm zawieszonych w cytoplazmie.
Glikogen mięśni w procesie glikolizy ulega transaminacji do alaniny, która jest eksportowana z mięśni i zużywana do glukoneogenezy w wątrobie. Pomimo nietworzenia wolnej glukozy, uwalniany jest glukozo-1-fosforan niezbędny do aktywności mięśnia (przekształcany w glukozo-6-fosforan włączany do procesu glikolizy, w którym uzyskiwane jest ATP).
Rozkład glikogenu (glikogenoliza) przebiega dwoma torami: fosforolitycznym i hydrolitycznym. Rozkład ten jest indukowany działaniem glukagonu (hormon produkowany przez komórki α trzustki), a skutkiem tego procesu jest podniesienie poziomu cukru we krwi. Rozkład glikogenu w wątrobie spowodowany jest zapotrzebowaniem organizmu na cukier. Odwrotny proces zachodzi w momencie oddziaływania insuliny (antagonistycznego hormonu glukagonu), kiedy to zachodzi wiązanie glukozy z krwi w glikogen w wątrobie (→glikogenogeneza).