W dzisiejszym świecie Promieniowanie gamma to kwestia, która zyskała ogromne znaczenie w społeczeństwie. Od kilku lat Promieniowanie gamma jest przedmiotem debat i analiz w różnych obszarach, od polityki po technologię, w tym kulturę i edukację. Znaczenie Promieniowanie gamma polega na jego wpływie na codzienne życie ludzi, a także na jego wpływ na rozwój społeczeństwa jako całości. W tym artykule będziemy dalej badać rolę, jaką odgrywa Promieniowanie gamma w różnych aspektach współczesnego życia i sprawdzamy, w jaki sposób jego obecność nadal kształtuje nasze środowisko i doświadczenia.
Promieniowanie gamma – wysokoenergetyczna forma promieniowania elektromagnetycznego. W wielu publikacjach rozróżnienie promieniowania gamma oraz promieniowania X (rentgenowskiego) opiera się na ich źródłach, a nie na długości fali[1]. Promieniowanie gamma wytwarzane jest w wyniku przemian jądrowych albo zderzeń jąder lub cząstek subatomowych, a promieniowanie rentgenowskie – w wyniku zderzeń elektronów z elektronami powłok wewnętrznych lub ich rozpraszaniu w polu jąder atomu. Promieniowanie gamma jest promieniowaniem jonizującym i przenikliwym. Promieniowanie gamma oznacza się grecką literą γ, analogicznie do korpuskularnego promieniowania alfa (α) i beta (β).
Promieniowanie gamma przechodząc przez materię jest pochłaniane (wielkość pochłaniania zależy od energii promieniowania). Za pochłanianie promieniowania gamma odpowiadają następujące zjawiska (w nawiasie podane są opisy odnoszące się do wykresu)[2]:
Udział zjawiska fotoelektrycznego i rozpraszania komptonowskiego w całkowitej absorpcji maleje wraz ze wzrostem energii na rzecz wzrostu udziału kreacji par Przy małych energiach, dominuje zjawisko fotoelektryczne[2].
Sumarycznie, absorpcja promieniowania gamma w materii ma charakter wykładniczy: gdzie: I0 – natężenie promieniowania przy braku absorpcji, I – natężenie prom. po przejściu przez warstwę grubości x absorbentu, μx – liniowy współczynnik osłabiania promieniowania. Z charakteru równania wynika, że zasięg promieniowania gamma w materii jest teoretycznie nieskończony[2].
Materiał | Grubość mm | |
---|---|---|
Energia 662 keV | Energia 284 keV | |
Ołów | 63,5 | 35,6 |
Stal | 172,7 | 94,0 |
Beton | 533,4 | 355,6 |
Podczas wybuchu jądrowego bomby atomowej część energii wybuchu zamienia się na promieniowanie jonizujące. Promieniowanie gamma emitowane w trakcie wybuchu określa się jako natychmiastowe promieniowanie gamma, a emitowane w okresie późniejszym z izotopów promieniotwórczych powstałych w trakcie wybuchu nosi nazwę opóźnionego promieniowania gamma. Natychmiastowe promieniowanie gamma generowane jest bezpośrednio podczas wybuchu, a także w wyniku oddziaływania innych typów promieniowania (np. promieniowania neutronowego) z materią[3]. Podczas ataku atomowego na Hiroszimę ok. 5% osób zmarłych w ciągu 30 dni od wybuchu było ofiarami oddziaływania promieniowania gamma[4].
Człowiek nie posiada narządów zmysłów pozwalających mu na postrzeganie promieniowania gamma, którego detekcja stała się konieczna wraz z rozwojem technologii jądrowej. Ogólnie detektory promieniowania gamma wykorzystują własności jonizacyjne tego promieniowania i można je podzielić na:
Promienie gamma mogą służyć do sterylizacji sprzętu medycznego, jak również produktów spożywczych. W medycynie używa się ich w radioterapii do leczenia nowotworów[5] (tzw. bomba kobaltowa, nóż gamma) oraz w diagnostyce, np. tomografia emisyjna pojedynczych fotonów. Ponadto promieniowanie gamma ma zastosowanie w przemyśle oraz nauce, np. pomiar grubości gorących blach stalowych, pomiar grubości papieru, wysokości ciekłego szkła w wannach hutniczych, w geologii otworowej (poszukiwania ropy i gazu ziemnego), w badaniach procesów przemysłowych (np. przepływu mieszanin wielofazowych, przeróbki rudy miedzi). Promieniowanie γ ma zastosowanie w badaniach z dziedziny chemii radiacyjnej.