W dzisiejszym świecie Profil lotniczy zyskał niespotykane dotąd znaczenie. Niezależnie od tego, czy na poziomie osobistym, zawodowym czy społecznym, Profil lotniczy stał się tematem ciągłego zainteresowania i debaty. Jego wpływ sięga od sposobu, w jaki odnosimy się do innych, po sposób, w jaki wykonujemy nasze codzienne czynności. W tym artykule szczegółowo zbadamy znaczenie Profil lotniczy i tego, jak jego wpływ spowodował znaczące zmiany w różnych aspektach naszego życia. Od swoich początków do przyszłej prognozy, Profil lotniczy będzie nadal przedmiotem badań i refleksji, który zasługuje na naszą pełną uwagę.
Profil lotniczy – obrys przekroju skrzydła samolotu, łopaty śmigła itp. w płaszczyźnie prostopadłej do osi biegnącej wzdłuż rozpiętości skrzydła (lub promienia śmigła czy wirnika). Cechą charakterystyczną profilu lotniczego jest zdolność do efektywnego wytwarzania siły nośnej pod wpływem powietrza opływającego profil (płat).
Profile lotnicze są przedmiotem badań w tunelach aerodynamicznych: dąży się do otrzymania jak największej siły nośnej (dla spodziewanej prędkości samolotu) oraz minimalizacji oporu profilu.
Zbiór profili lotniczych składa się na kształt płata (płat może mieć różne profile wzdłuż rozpiętości): skrzydła, łopaty śmigła lub łopaty wirnika śmigłowca. Kształt profilu lotniczego mają także łopatki turbin i sprężarek silników odrzutowych.
Ze względu na symetrię wyróżnia się podział na dwie grupy:
W lotnictwie szeroko stosowane są profile rodziny NACA (ang. National Advisory Commitee for Aeronautic). Spotyka się także inne profile, np. RAE (Royal Aircraft Establishment), GAF, CAGI (Centralnyj Aerogidridynamiczeskij Institut), profile Clark, Epplera i Wortmana.
Polskie profile, zaprojektowane w Instytucie Lotnictwa w Warszawie, oznaczone są jako IL (np. ILHX4A1-12M, ILHX4A1-9 – profile łopat wirnika nośnego śmigłowca PZL IS-2[1]).
Cechą wyróżniającą jest położenie maksymalnej grubości profilu w ok. 25% długości cięciwy. Za tym punktem następuje przejście warstwy laminarnej w turbulentną, co powoduje wzrost oporu tarcia. Stosowane w samolotach o niskich prędkościach przelotowych ze względu na duży współczynnik siły nośnej.
Maksymalna grubość znajduje się w zakresie 35–70% długości cięciwy, dzięki czemu na przeważającej długości profilu przepływ jest laminarny (ma mniejsze od turbulentnego opory tarcia). Utrzymanie laminarnej warstwy przyściennej jest możliwe tylko w niewielkim zakresie małych kątów natarcia i jest wrażliwe na odkształcenia i zabrudzenia opływanej powierzchni. Przykłady: NACA 66(1)-212, Wortmann FX 67-K-150/17.
Profile nadkrytyczne posiadają stosunkowo płaską górną powierzchnię, z dość mocno wybrzuszonym dołem profilu. Maksymalna strzałka ugięcia szkieletowej przesunięta jest mocno do tyłu. Opracowane dla samolotów latających w zakresie prędkości transonicznych. Cechy profili tego typu wpływają na zwiększenie krytycznej liczby Macha, opóźniają więc powstanie fal uderzeniowych związanych z lokalnym przekroczeniem prędkości dźwięku przez powietrze przyspieszające na profilu. Opracowane są dzięki oprogramowaniu CFD. Przykładowe profile to: RAE 5214, NASA/Langley SC(2)-0714.
Charakteryzujące się ostrą krawędzią zarówno spływu, jak i natarcia; zaprojektowane dla samolotów poruszających z prędkościami naddźwiękowymi.
Mówiąc o profilu lotniczym używa się także określeń:
Patrząc na płat jako zbiór profili linię łączącą noski profili nazywa się krawędzią natarcia a linię łącząca ostrza – krawędzią spływu.
Profil lotniczy charakteryzuje się następującymi bezwymiarowymi wielkościami aerodynamicznymi:
Wykresy zależności tych współczynników od kąta natarcia tworzą tzw. charakterystykę profilu.
Wyróżnia się profile NACA 5 i 4-cyfrowe oraz profile NACA laminarne. Do ich opisu używa się wielkości wyrażonych w procentach względem długości cięciwy.